If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4j^2=8j+3
We move all terms to the left:
4j^2-(8j+3)=0
We get rid of parentheses
4j^2-8j-3=0
a = 4; b = -8; c = -3;
Δ = b2-4ac
Δ = -82-4·4·(-3)
Δ = 112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{112}=\sqrt{16*7}=\sqrt{16}*\sqrt{7}=4\sqrt{7}$$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-4\sqrt{7}}{2*4}=\frac{8-4\sqrt{7}}{8} $$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+4\sqrt{7}}{2*4}=\frac{8+4\sqrt{7}}{8} $
| h/0.5*0.5=7/0.5 | | 8+h10 =39 −2 | | 7.5+k-7.5=10-7.5 | | -4x+5(-x-8)=59 | | 35=3x+2(-3x+4) | | 12x-4+10x-10=180 | | (x+6)(x+4)=39 | | 2(2x^2-5)=3(2-3x^2) | | 0=x^2-10+25 | | 135=-3x+2(-7x-9) | | X^-4x-12=0 | | Y=^2+11x+30 | | 4x2−12=0 | | x^2-4-8=0 | | 6x-5(7x-7)=180 | | 2x^2-9=119 | | (6x-8)-(8x+3)=x | | 500-15x=350 | | 5m-15=7m-17 | | 59=3x+5(2x-9) | | 5m-15=7m-27 | | 14-x/4=8 | | 14y-11y-6=11y-7 | | -5x+75=45 | | 8x+153x+20=46 | | 3x+3+75=180 | | 14y-11y-6=11y-27 | | -12r2+5r+3=0 | | 6x+3x=327 | | 2^(x+1)=8x | | 0.6x-1.9=-9.7 | | 2x^2-1x-136=0 |